crosshyou

主にクロス表(分割表)分析をしようかなと思いはじめましたが、あまりクロス表の分析はできず。R言語の練習ブログになっています。

都道府県別の睡眠・食事・仕事の平均時間データの分析3 - 仕事時間は男女ともに2006年度よりも2011年度のほうが短い。

 

www.crosshyou.info

 の続きです。

今回は、2006年度と2011年度で睡眠時間、食事時間、仕事時間に違いがあるかどうかを調べます。

はじめに、2006年度のデータと2011年度のデータで、都道府県が同じ順番で並んでいるのかを確認します

f:id:cross_hyou:20200517141730j:plain

data2006$Pref == data2011$Prefで両者の都道府県を確認しています。同じならTRUEに、違っていたらFALSEになります。これをsumで足し算しています。47ということは、TRUEが47個ということです。つまり、都道府県の並び方は同じということです。

次に、Sleep_M, Sleep_F, Eat_M, Eat_F, Work_M, Work_Fと毎回入力しなくでもいいように、hoursという名前のオブジェクトを作ります。

f:id:cross_hyou:20200517142238j:plain

二つの変数の平均値を比較する前に二つの変数の分散が同じかどうかを調べないといけないです。var.test関数で調べます。

for関数を使って、6つの変数について一気に検定します。

f:id:cross_hyou:20200517143548j:plain

Sleep_Mについてはp-valueは0.5705なので分散に違いがあるとは言えないです。

 

f:id:cross_hyou:20200517143717j:plain

Sleep_Fはp-valueは0.6416なので分散に違いがあるとは言えないです。

 

f:id:cross_hyou:20200517143829j:plain

Eat_M, Eat_Fも分散に違いがあるとは言えないです。

f:id:cross_hyou:20200517143929j:plain

仕事時間は男性の仕事時間は分散に違いがあるとは言えないですが、女性の仕事時間は、p-valueが0.0489と0.05よりも小さいですので、分散に違いがあると言えます。

第1回目の分析で女性の仕事時間が変動係数がこの6つの変数の中では一番大きい値でした。ここでも女性の仕事時間は他と比べて特徴がありますね。

 

女性の仕事時間以外は、t.test関数を使って、女性の仕事時間はwilcox.test関数を使って平均値に違いがあるか、データの分布位置に違いがあるかを調べます。

f:id:cross_hyou:20200517144711j:plain

Sleep_Mはp-value = 0.3141と0.05よりも大きいので2006年度と2011年度では違いはありません。

f:id:cross_hyou:20200517144838j:plain

Sleep_Fはp-value = 0.453と0.05よりも大きいので2006年度と2011年度で違いはありません。

 

f:id:cross_hyou:20200517144954j:plain

Eat_Mはp-value = 0.2025, Eat_Fはp-value = 0.2884とどちらも0.05よりも大きいので2006年度と2011年度では有意差はありません

f:id:cross_hyou:20200517145147j:plain

Work_Mはp-value = 1.411e-11と0.05よりも小さいので、有意差があります。

Work_Fはwilcox.test検定で確かめます。

f:id:cross_hyou:20200517145549j:plain

Work_Fはp-value = 2.662e-06と0.05よりも小さいです。2006年度と2011年度では違いがあると言えます。

Work_Mの2006年度と2011年度の平均値をみてみます。

f:id:cross_hyou:20200517145822j:plain

Work_Fも同じように平均値を見てみます。

f:id:cross_hyou:20200517150003j:plain

仕事時間は男女とも2006年度もよりも2011年度のほうが短くなっていることがわかります

今回は以上です。